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The B-modepolarization of thecosmic microwavebackground providesaunique window into tensor pertur-
bations from inflationary gravitational waves. Survey e�ects complicate the estimation and description of the
power spectrum on the largest angular scales. The pixel-space likelihood yields parameter distributions with-
out the power spectrum as an intermediate step, but it does not have the large suite of tests available to power
spectral methods. Searches for primordial B-modes must rigorously reject and rule out contamination. Many
forms of contamination vary or are uncorrelated across epochs, frequencies, surveys, or other data treatment
subsets. The cross power and the power spectrum of the di�erence of subset maps provide approaches to reject
and isolate excess variance. We develop an analogous joint pixel-space likelihood. Contamination not modeled
in the likelihood produces parameter-dependent bias and complicates the interpretation of the di�erence map.
We describea null test that consistently weights the di�erence map. Excessvariance should either be explicitly
modeled in the covarianceor be removed through reprocessing thedata.

I . INTRODUCTION

Systematic error control and rejection are central consid-
erationsof cosmic microwavebackground (CMB) instrument
design and dataanalysis. Thereionization featureof inflation-
ary gravitational waves [25, 26, 43] and improved constraints
on the optical depth �[2] are of great interest, and require
analysis of CMB polarization on the widest angular scales of
the sky. These measurements are susceptible to contamina-
tion because they relate instrument response and foregrounds
across the largest angular and temporal separations.

A well-established approach to detect or reject systematics
splits the data into epochs, frequencies, surveys or other sub-
setsacrosswhich acontaminant variesor isuncorrelated. This
general approach can taketheform of across-spectral estima-
tor [51] or power spectrum null tests across a variety of dif-
ference maps. The maps can be split and subtracted to check
for particular instrumental e�ects such as time constants (e.g.
[3]) or to get uncorrelated realizations of detector noise or at-
mospheric fluctuations (e.g., [7, 44]). Contamination that is
uncorrelated between the maps does not produce bias in the
cross power, but it does boost errors. Here, we consider ro-
bustnessand bias in thepixel-space likelihood and develop an
approach analogous to thecrosspower or di�erencemap null
test.

Anisotropy spectral analysis compresses map information
by exploiting the Gaussianity and statistical isotropy of the
CMB signal. A survey is limited to fractions of the sky by
its scan strategy and galactic contamination. Truncation has
two consequences for the power spectrum. The estimate Ĉ`

is the sum of quadratic products of normally distributed map
variations, making P(C` jx) (given map data vector x) non-
Gaussian unless there are su�cient modes available to be in
the central limit. On apartial sky, the spherical harmonics for
intensity and polarization are an incomplete basis, which re-
sults in correlations between ` [18, 24], and E- and B-mode

polarization mixing [5]. Polarization power spectra through
pseudo-C` [24, 36] and related quadratic methods have well-
established procedures for deriving the P(C` jx) [10, 16, 20].
Mangilli et al. [33] recently developed an implementation of a
completeprobability distribution function for thecrosspower
spectrum on largescales, including the e�ectsabove.

An alternative approach resolves the challenges of spectral
estimation by determining the cosmological parameters di-
rectly from themap [13, 28, 35, 38, 52]. Thepixel-space like-
lihood approach hasseveral advantages. Cutsand variation in
coverage on a partial sky are included in the pixel covariance
model and do not require simulations or analytic treatment
of multipole correlation or polarization mixing. The likeli-
hood represents the complete information contained in maps
with Gaussian signal and noise, so it can achieve the lowest-
variance estimates of the parameters. It accommodates some
classesof foreground subtraction and self-consistently propa-
gates parameter errors [28, 38, 52]. The likelihood avoids the
need to represent a complete joint (non-Gaussian, correlated)
probability distribution of the C` ’s for ` on angular scales
comparable to the survey size. Finally, the likelihood does
not require reference to fiducial model parameters. There are
well-established procedures for combining information from
pixel-spacelikelihoodsof largescalesand spectral analysisof
small scales [35, 38].

Drawing an analogy to the power spectrum null test, we
can estimate cosmological parameters from the likelihood of
a di�erence between two maps from subsets of the data. The
sky signal drops out in the di�erence, and only noise or vari-
able contamination remains. If there is no contamination, the
posterior distribution of cosmological parameterswill becon-
sistent with data containing only detector noise. A null test
based on the likelihood of the di�erence may fail to be infor-
mative when contamination does not match covariance in the
data model. In this case, excessvarianceproducesparameter-
dependent bias through thee�ectiveweighting of thecontam-
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inants in map space. In the di�erence map, there is no signal,
and the contaminant isweighted di�erently than in the sum.

We develop the joint likelihood analogy to the cross power
and null test and propose a reweighting method for di�er-
ence maps. Reweighting gives a consistent interpretation of
bias from contamination in the sum and di�erence. However,
excess variance (misspecification) also produces bias in the
width of the posterior parameter distribution. Contamination
must be treated either in a reanalysis of the data or as a new
term in the likelihood model.

Themethodsdeveloped hereapply to experimentsand mis-
sions specifically seeking the largest scales on the sky (Ad-
vanced ACTPol [21], CLASS [12], GroundBIRD [45], LSPE
[1], PIPER [31], and QUIJOTE [32]) and missions(CORE+ 1,
Inflation Probe[30], LiteBIRD [34], and PIXIE [29]), but also
to the largest angular scalesof surveyson smaller regions.

Section II reviews the likelihood approach and its relation
to spectral methods. Section III extends the likelihood to in-
clude the detector noise amplitude as a nuisance parameter.
This setting demonstrates properties of an incomplete covari-
ance model. Section IV reviews the cross-spectral estimator
and defines an analogous joint likelihood between data splits.
Section IV D describes the joint estimator with unknown con-
tamination covariance and develops a re-weighted di�erence
map null test. Section V summarizes theapproach.

I I . THE LIKELIHOOD OF CMB MAPS

The Gaussian log-likelihood L � �lnP(xj�) for map data
x given parameters � is

2L = Tr [lnC(�) + C(�)�1D(x;�)] (1)

D(x;�) � [x ��(�)][x ��(�)]T;

where C and �are the covariance and mean of the map vec-
tor x. In subsequent equations, we assume implicit parameter
dependence in the mean and covariance model or emphasize
dependenceon individual model parameters.

The data vector for CMB polarization is xT � (xT
Q; xT

U), a
stack of Stokes Q and U maps. Stokes I intensity can also be
added for complete TT, TE, EE, and BB two-point informa-
tion, but modelsandsimulationshereuseonly StokesQandU
for simplicity. Themapsused in the likelihoodsaresmoothed
at �FWHM = 15�and binned onto Nside = 8 [15], encompassing
multipoles2 � ` � 23. Themask region isdefined by WMAP
P06 [35] and a declination limit of �73� < � < 27� avail-
able to wide-area surveys in the Atacama, such as Advanced
ACTPol [21] and CLASS [52] in the near term. Combined,
fsky � 0:5, shown in Fig.1.

Thetotal covarianceC(�) isthesum of cosmological signal
and noise, C(�) = S(�)+ N(�). Thesignal covariancematrix
isdefined from thepower spectrum C`(�) through [38]

S(�) =
X

`

X

XY

CXY
` (�)PXY

` ; (2)

1
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where our XY sum extends over only EE and BB to pre-
dict the Stokes Q and U covariance. PXY

` is described in
Tegmark & de Oliveira-Costa [48] and includes e�ects of
the �FWHM = 15� smoothing and incomplete sky coverage.
For simplicity, we fix �CDM cosmological parameters [23]
throughout, but these could be jointly estimated in the likeli-
hood. Conclusions are not dependent on the base cosmology
at the currently available precision. The input data x are gen-
erated using synfast [15] plus a Gaussian random detector
noiseand areconsistent with thecovariancein Eq. (2). In sub-
sequent sections, we add contamination to the maps to study
departures from themodel.

For the purpose of demonstrating the B-mode constraint,
we use a reference survey with noise RMS amplitude
10�K arcmin. This noise level is typical of per-band sensi-
tivities of next-generation experiments in their prime CMB
scienceband (seee.g. Errard et al. [11] and Remazeilleset al.
[39] for summaries). Throughout, “detector noise” refers to
thevariance in themap attributable to thedetectors, which we
assume isuncorrelated between map pixels.

FIG. 1. Mask used in the simulations here (Nside = 8, giving fsky �
0:5), representative of the region accessible from the Atacama, as
well asmasking the galaxy through WMAP’sP06 map.

To simulate the distribution of experimental outcomes,
we find maximum likelihood (ML) parameters across Monte
Carlo realizations of data sets using the limited-memory
Broyden-Fletcher-Goldfarb-Shanno algorithm [6, 53].

A. Relation to quadratic methods

The Newton-Raphson approach provides an analytic ex-
pression to iterate to find the maximum likelihood as [4, 9]

��i =
X

j

F�1
i j

1
2

Tr
h
(xxT �C)

�
C�1C; jC

�1
�i

(3)

Fi j �
1
2

Tr (C�1C;iC
�1C; j ); (4)

where commas denote partial derivatives as C;i � @C=@�i.
Thisexpression givestheupdateto theparameter �i among the
parameters in � = f�1; :::g. Equation(3) evaluates all covari-
ancesand derivativesat thecurrent iteration, and theresulting
��i gives the vector of changes �� to iterate to the maximum
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likelihood. Each iteration is driven by xxT � C(�), the dif-
ferencebetween thecovariancemodel at that iteration and the
outer product of thedata.

The covariance model C = �C;� + N provides a simple
example of quadratic estimation of the covariance amplitude
�. Let the first guess be � = 0. Then the first step toward the
maximum likelihood valueof �is

�̂=
xTQ�x �b
Tr (Q�C;�)

b = Tr (Q�N) (5)

Q� = N�1C;�N�1: (6)

The quadratic term xT N�1C;�N�1x inverse-noise weights the
map data (N�1x) and dotsacross thecovariancestructureC;�.
The “noise bias” b removes the contribution of noise N. The
denominator is a normalization that ensures that the expecta-
tion value is

h�̂i =
Tr (�Q�C;� + Q�N) �Tr (Q�N)

Tr (Q�C;�)
= �: (7)

The quadratic estimator with full C�1 weights is the
minimum-variance estimate of Gaussian covariance ampli-
tude parameters [47, 48]. Quadratic methods are commonly
used to estimate the anisotropy spectrum [8–10, 14, 19, 24,
40]. In this case, the parameters of the covariance model are
theC` ’s themselvesor band powers.

The quadratic approach to the maximum likelihood pro-
vides some analytic intuition about the behavior of the max-
imum likelihood (Sec. III A) and relation of the joint pixel-
space likelihood to the cross power (Sec. IV A and Ap-
pendix A).

B. Applicability of the likelihood approach

The pixel-space likelihood is analytically simple at the
expense of being computationally intensive and structurally
rigid. Evaluation of the likelihood requires the specification
and inverse of the Npix � Npix covariance matrix of the maps,
which is numerically expensive. The pixel-space likelihood
has thereforeseen greatest use in extracting information from
the largest scales in the survey, which span O(1000) pixels.
Note that thepixel-spaceanalysis isgenerally useful for mod-
eling signal covarianceon angular scalesapproaching thesize
of thesurvey, not just at low-` .

Given map data and a model, the likelihood is a self-
su�cient “black box” to determine the cosmological parame-
ters. Aslongasthedatamodel isaccurate, thelikelihoodgives
the probability distribution of the parameters. Spectral meth-
odsprovidegreater freedom, such aschoosing spatial weight-
ings, removing foregrounds in advance, and throwing out spa-
tial modes. Freedom also carries the responsibility of propa-
gating treatments to the final parameter distribution. Choices
in dataweighting andfiltering other than C�1 moveaway from
optimality. In contrast, thelikelihood hasonly thefixed model
and doesnot di�erentiatebetween thesignal structurecovari-
ance and dataweighting or filtering.

Covariance in theobserved data that isneither modeled nor
isolated could produce a spurious detection of B-modes or

bias the true value. Some contaminant covariance structure
may be known accurately in advance. For example, thevaria-
tion of detector noiseacrossthemap can bemodeled from the
survey coverageand datacuts. However, theamplitudeof that
noise may not be known from only laboratory measurements
or characterization of the time domain data. It is straightfor-
ward to include detector noise amplitude in the likelihood’s
covariance model and to fit it jointly with the cosmological
parameters. Fitting for the amplitude removes that source of
bias from the cosmological parameters and gives confidence
regions that reflect the full covariance.

I I I . BIASFROM EXCESSDETECTOR NOISE

A simple covariance model for CMB polarization data is
thesum of tensor and scalar cosmological contributionsand a
known noise, or [28, 52]

C(fr; sg) = rST + sSS + N; (8)

where the tensor-to-scalar ratio r multiplies the tensor covari-
ance structure ST, the scalar amplitude s � As=As;0 multiplies
scalar covarianceSS, and N isfixed detector noise. ST and SS

are derived from the sum on EE and BB in Eq. (2) for fixed
�CDM cosmological parameters [23].

Figure2 shows the Monte Carlo maximum likelihood dis-
tribution of r for an input r = 0:05 when both the modeled
noise and the true map noise are 10�K arcmin, and also the
case when the detector noise is 30% higher (in map space)
than modeled in thefixed N term.

A simple extension to the covariance model can also fit for
the detector noise amplitude in the maps with the covariance
model, as [17]

C(fr; s; �g) = rST + sSS + (�=�0)2N: (9)

Figure2 shows that the distribution of r is correctly cen-
tered around the input r = 0:05 when the noise amplitude of
13�K arcmin is jointly modeled with the cosmological signal
as in Eq. (9). It is slightly broader due to the higher level of
detector noiseand expenseof fitting �.

It is possible to fit for cosmological amplitudes r and s in
parallel with noise � because these have di�erent covariance
structures. In multipole space, s modulates the E-modes, r
impacts the E- and B-modes and detector noise contributes
to both but with a di�erent ` dependence. When a contami-
nant has more overlap with the B-mode covariance structure,
it becomes harder to separate. In the worst case, the excess
covariance structure is identical to the signal and so is indis-
tinguishable.

Figure3 shows the 1� and 2� equivalent regions for the
distribution of bias in r̂ML that is produced by detector noise
30% higher than modeled. The bias has clear dependence on
the amplitude of true B-modes present in the map. The pa-
rameter dependence of the bias goes against intuition from
the power spectrum, where uncorrelated contributions in the
map are additive in C` . The behavior in Fig.3 does not occur
for all types of covariance. For example, adding r = 0:1 B-
modes to a map with r = 0 B-mode amplitude will produce
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FIG. 2. The Monte Carlo distribution of the maximum likelihood
tensor-to-scalar ratio r for several scenarios of detector noise. Solid
curve: the distribution of r when both the map and the covari-
ance model have 10�K arcmin noise, and a true input r = 0:05.
Dotted curve: the biased distribution of r when the map noise
is 13�K arcmin while the likelihood’s covariance model assumes
10�K arcmin. Dashed curve: the distribution of r with a map noise
level of 13�K arcmin, and the likelihood models the detector noise
amplitude jointly with the signal. Jointly fitting for the noise recov-
ers the input r value and represents the larger uncertainty in r from
13�K arcmin noisevs. the 10�K arcmin reference case.

FIG. 3. The bias in r̂ML from detector noise that is 30% higher than
modeled in the likelihood, as a function of the true B-mode r sig-
nal in the map. Light and dark gray regions are percentile regions
equivalent to 2� and 1� respectively, about the median (solid line).
The distribution is estimated as the Monte Carlo of the maximum
likelihood value of r over map realizations of both signal and detec-
tor noise. Thedashed lineshowsbias in r inferred from thequadratic
estimateof r, asthefirst step of theNewton-Raphson approach to the
maximum likelihood (Sec. II A). Thepresenceof true B-modesignal
modulates the weighting of variance that contributes to the bias.

an estimate of ĥri = 0:1. Adding a systematic with equivalent
r = 0:1 B-modes to a map with true signal r = 0:1 B-mode
amplitude produces an estimate of ĥri = 0:2. More generally,
for a systematic level of rsys, the measured ĥri = rtrue + rsys,
independently of the level of rtrue.

A. Parameter dependence of the bias

There is no intuitive closed-form expression for the maxi-
mum likelihood, but the quadratic approach to the maximum
likelihood can give approximate expressions that explain the
basic behavior. Thequadratic estimate for r̂ in Eq. (8) isanal-
ogous to the covariance amplitude determination in Eq. (5),
and gives

r̂ = (xTC�1STC�1x �b)=Tr (C�1STC�1ST) (10)

b = Tr (C�1STC�1N); (11)

where matrices are as defined in Eq. (8). Taking the expecta-
tion value gives Tr (C�1STC�1hxxTi ) in the numerator. Iden-
tify the total covariance

Ctot � hxxTi = rST + sSS + N + �; (12)

where� issomecontamination covariancepresent in thedata
but not the model. Thermal noise is represented by N in the
model, and is removed through subtraction of b. The remain-
ing incurred bias in ĥri due to the un-modeled term � is

ĥrbiasi = Tr (C�1STC�1�)=Tr (C�1STC�1ST): (13)

In the numerator, C�1� weighs the contamination �, and C
depends on the cosmological parameters r and s through co-
variance terms rST + sSS. Hence the weighting of the con-
tamination is parameter dependent. Other parameters such as
hŝbiasi have a similar expression of some weighted overlap of
the signal covariance structure with the contamination. The
contamination biases all parameters that have structural over-
lap, and in away that dependson thevalueof theparameters.
Figure3 shows the quadratic approximation to the bias as a
dashed line. It is lower than the median of maximum likeli-
hood realizations but captures much of the e�ect. Recall that
the quadratic expression is only the first step of the Newton-
Raphson approach to themaximum likelihood.

To get additional analytic intuition, Appendix B derives
ĥrbiasi in terms of the signal and contaminant covariance
eigenvalues in the case where the contaminant is a multiplier
times the identity matrix, � = �2

b1. Then the bias becomes a
simple ratio

ĥrbiasi = �2
b
w(r)T1
w(r)T�

; (14)

where w(r) is the weight per signal eigenmode (given in Ap-
pendix B), and �is the vector of signal eigenvalues. Figure4
shows the terms of w(r)T�for each mode, as a function of r,
and is S=(S + N) per mode. For low r, thereare fewer signal-
dominated modes. The r-dependence of the weight gives r-
dependence to the bias. If the contaminant has the same form
as the B-mode, then the numerator becomes w(r)T�, and the
bias is independent of any true r in themap.

The quadratic estimator in Eq. (5) has additional flexibility
that is not available in the likelihood because it separates the
covariance structure of the signal from the covariance struc-
tureof the weights. That is, in thequadratic form

�̂/ xTC̃
�1

C;�C̃
�1

x; (15)



5

FIG. 4. S=(S + N) weight per eigenmode for three values of tensor
amplitude: r = 0:01 (solid curve), r = 0:1 (dashed curve), and r = 1
(dotted curve). The parameter dependence of the weight produces
parameter dependence in the bias from contamination.

C̃
�1

and C;� do not need to originate from the same parent
C. In the likelihood, this choice is fixed for both. Di�er-
ent choices of weights a�ect the optimality of the estimator
and the structure of parameter correlations. In the pseudo-C`

approach to spectral estimation, the quadratic combination of
datacan beweighted by some N�1 (hit map) or other apodiza-
tion W. In either case, the weighting does not depend on the
parameters.

IV. LIKELIHOODSACROSSDATA SPLITS

Many sources of contamination vary or become uncorre-
lated across subsets of data from di�erent epochs, frequen-
cies, surveys, or data treatments. The cross power estimator
[51] extends the quadratic estimator in Eq. (5) by forming the
quadratic product across subsets A and B of the data as

Ĉ` / xT
AN�1

A S;` N�1
B xB: (16)

The expectation value hĈ` i / Tr (N�1
A S;` N�1

B hxBxT
Ai ) contains

xBxT
A, which averages to zero for any variance terms that are

not common to both A and B. (Variance not common be-
tween A and B increases the variance of the estimator.) This
approach has recently been extended to analysis of variance
when few modesare available in asurvey volume [33].

Thedi�erenceof mapsacrossadatasplit, xA � xB, will re-
move any astronomical signal common to both maps. The
power spectrum of the di�erence map tests for any excess
variance. For example, theanalysisof time-domain datamust
account or compensate for the detector response time con-
stants. Otherwise, time constants can produce a residual vari-
ance in the di�erence between maps of left- and right-going
scans. Large suites of such null tests support the ultimate pa-
rameter determination by ruling out sourcesof contamination.
This approach has been applied extensively to spectral anal-
ysis and, to a much more limited degree, pixel-space likeli-
hoods [38].

A. The joint likelihood

Thepixel-spacelikelihood analogy to thecrosspower isthe
joint likelihood of the maps A and B in the data split. Model
thejoint likelihood acrossthedatasplit between A and B, with
xT = (xT

A xT
B) as

C =

 
S(�) + NA S(�)

S(�) S(�) + NB

!

; (17)

where S(�) is in common to both A and B. Recall that xA is
still astack of theStokesQ and U maps, so thecombined data
vector (xT

A xT
B) is thestack of four mapsand thecovariance is

also naturally 4 �4 blocks for correlationsof Stokes Q and U
across A and B. The noise covariance can also be extended to
accept parameterssuch as the� amplitude in Sec. III.

A likelihood model for that data that uses Eq. (17) extracts
parameter information from A � B (cross) but also A � A and
B � B (auto). This can be seen in the form of the quadratic
estimator xTC�1C;�C

�1x, where both C�1 and C;� have o�-
and on-diagonal block terms, so the inner product with xT =
(xT

A xT
B) mixes both A � B and A � A or B � B information.

A likelihood that uses the covariance model of Eq. (17) will
havesensitivity to information in A �A, and so doesnot have
thesameimmunity to uncorrelated noiseasthecrosspower in
Eq. (16).

To reach a closer analog to the cross power, take a covari-
ance model which has a duplicate set of nuisance parameters
on the diagonal as

C =

 
S(�) + S(�b) + NA S(�)

S(�) S(�) + S(�b) + NB

!

: (18)

Adding S(�b) to the diagonal and marginalizing over �b ef-
fectively sweepstherug out from under parameter constraints
on � coming from A � A and B � B. Appendix A relates
Eq. (18) to the cross quadratic product xT

AN�1
A C;�N�1

B xB (with
no noisebiasto remove) asthefirst step of aNewton-Raphson
iteration starting from a noise-only covariance.

The approach in Eq. (18) resembles mode avoidance or
cleaning strategies. These are commonly implemented by
fitting and subtracting mode functions. Several authors [41,
42, 46, 49] consider this class of avoidance and argue that
the following three are equivalent: (1) least-squared fitting
and subtracting modes in the mean model, (2) marginalizing
over theamplitudeof nuisancemodes in themean model, and
(3) taking a multiplier of the covariance structure of the con-
taminated modes to infinity. In the present case, rather than
marginalizing over the bias nuisance variables �b, another
approach that suggests itself would be to set the amplitude
of these on-diagonal variance terms to infinity through �b.
This limit throws away dependence on the nuisance parame-
ters, and so halves the number of free parameters to estimate
through the likelihood. Taking on-diagonal signal variance to
infinity results in aquadratic estimator that usesonly informa-
tion across the datasplit, as intended. However, it also results
in a C�1 weight applied to each map with infinite variance in
the signal modes; e.g., it also eliminates the signal. Rather
than marginalize over nuisance parameters in the mean, the
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likelihood using the covariance model in Eq. (18) marginal-
izes over nuisance parameters in the covariance. Taylor &
Kitching [46] give analytic expressions for marginalization
over covariance parameters. These can be used to simplify
computation inahigh-dimensionality parameter space, but are
not needed for the simple, few-parameter models considered
here.

B. The sum-di�erence likelihood

Rotating to a basis of sum and di�erence maps, (xs; xd) =
(xT

A + xT
B; xT

A � xT
B) simplifies the joint covariance in Eq. (18).

Take the detector noise amplitude to be identical between
splits A and B for simplicity (this can be arranged by split-
ting complementary setsof the datawith common integration
depth). The resulting likelihood separates as the product of
sum and di�erence likelihoods

P(xj�;�b) = Ps(xsj�;�b)Pd(xdj�b) (19)

Ps(xsj�;�b) � N(0;4S(�) + 2S(�b) + 2N)

Pd(xdj�b) � N(0;2S(�b) + 2N):

The factors of 2 and 4 are a by-product of taking the xT
A + xT

B
combination rather than 1=2�(xT

A + xT
B). Thesignal in common

to both mapsappearsas4S(�) because it addscoherently be-
tween the two maps, as (2�)2, and the bias of uncorrelated
contamination appears in both the sum and the di�erence as
2S(�b) becauseit istheadditionof twouncorrelatedvariances
S(�b) + S(�b) in each map.

An interpretation of thejoint sum-di�likelihood of Eq. (19)
is that Ps constrains theparametersplusbias, while thedi�er-
ence Pd constrainsonly bias from modulated contamination.

C. Sum-di�erence likelihood: B-mode contamination

Following Sec. III, take a simple model where S(�) =
rtrueST + strueSS. Again ST and SS are the covariance struc-
ture of the tensor and scalar modes in the Stokes Q and U
maps. The new parameters in the bias space are S(�b) =
rbiasST + sbiasSS. Figure5 shows the sum and di�erence like-
lihoods for r for a simulation with rtrue = 0:05, detector noise
of 10�K arcmin in each map, and contamination at the level
of rbias = 0:1 in uncorrelated realizations added to both maps.
The sum map can only constrain 2rtrue + rbias so it is a degen-
erate band from upper left to lower right. The di�erence map
can only constrain rbias with no dependence on rtrue, so it ap-
pearsasahorizontal band. Theproduct of the two likelihoods
recovers both the input rtrue = 0:05 and the contamination
level. The factor of two in 2rtrue + rbias ise�ectively anormal-
ization for the bias amplitude under the assumption that the
sourceof bias isuncorrelated between the split maps.

Marginalizing over rbias in the joint likelihood givesan esti-
mateof rtrue with errorsself-consistently inflated to reflect the
fact that someof theconstraining power of themap isused to
estimate bias. An analogous power-spectral null test uses the
di�erence of maps to rule out bias parameters. If the power

spectrum of the di�erence map is consistent with zero, a par-
ticular source of contamination can be ruled out. In a typical
useof thenull test, onceasourceof variance is ruled out, it is
taken to beidentically zero. In contrast, in thejoint likelihood,
Eqs. (19) and(18), uncertainty in the bias parameter is folded
into thefinal estimate r̂true.

FIG. 5. The likelihood of rbias and rtrue from the sum and di�erence
of maps across a split in the data. Here rtrue = 0:05 is in common
between the maps, and each map has an independent realization of
contaminating B-modesat the level rbias = 0:1. This representsasce-
nario wherethere is time-varying contamination with structure indis-
tinguishable from the B-modes. Solid lines: Theregionsof 68% and
95% probability enclosed (1�, 2� equivalent) in thelikelihood of the
sum map. It traces a degeneracy between interpretation of the data
as all true B-mode signal or all bias. Dashed lines: The analogous
regions for the likelihood of the di�erence map. This likelihood iso-
lates residual variance at the level rbias = 0:1. The joint likelihood
of sum and di�erence maps determines both the bias and the target
r amplitude with self-consistent errors. Both posterior distributions
are from a single realization of data, so the maximum likelihood is
not centered on the input parameters.

When the likelihood model includes all covariance terms,
the tensor to scalar ratio can be recovered without bias and
with correct confidence intervals. When the contaminant
covariance di�ers in structure from terms in the covariance
model, the cross likelihood fails and can give biased results
due to theweighting e�ect in Sec. III A.

D. Reweighting for di�erence map null tests

Section III provides a scenario where the data have some
covariance that is not explained by the structure in the likeli-
hood model. In the case of a single map, Sec. III A showed
how a parameter �is biased when its structure C;� overlaps
with contamination � through Tr (C�1C;�C

�1�). Further, the
biasdependson parametersthrough theC(�)�1 weight. In the
sum-di�erence formalism, the di�erence map has no signal
by construction, so the contamination is weighted di�erently
than in thesum map likelihood.
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Mis-specification of thecovariancemodel results in signifi-
cantly di�erent parameter biases in the likelihoodsof thesum
and di�erence maps. In the di�erence map, there is no cos-
mological B-mode signal by construction, so the pixel-space
covariance is equivalent to the case of r = 0. Figure3 shows
thebiasproduced by a30% excessof thermal noiseasafunc-
tion of r assumed in thecovariance. At r = 0, thelikelihood of
thedi�erencemap reportsnegligiblebiasproduced by theex-
cess thermal noise. In contrast, if the datahavea true r = 0:1,
the30% excessthermal noisewill produceabiasof �r = 0:06
on average, with fluctuations at the level of �r = 0:05. The
parameters inferred from the likelihood of the di�erence map
no longer provideuseful information about thebiasof param-
eters in the sum map, and may lead to false confidence in the
analysis.

For the likelihood of the di�erence to constitute a null test,
it must weigh the contamination consistently with the sum.
An approach to consistent weighting is to add a signal re-
alization xsig to the di�erence map xd and find the Monte
Carlo averageof theparametersover signal realizations (each
realization will have some signal variance). Any deviation
from the input parameters could be attributed to contami-
nation in the di�erence map. In this case, the data matrix
hDi = h(xsig + xd)(xsig + xd)Ti = xdxT

d + 4S(�), where hi is
theexpectation over signal realizations. (In thesum map, two
coherent copiesof thesignal areadded, giving a factor of 4 in
variance.) Rather than Monte Carlo, we take the expectation
valueof the likelihood over added signal, giving themodel

2L d = Tr [lnC̃d + C̃
�1
d (xdxT

d + 4S(�))] (20)

C̃d = 2S(�b) + 2N + 4S(�):

The factor of 2 in the bias covariance 2S(�b) represents the
assumption that the excess variance producing the systematic
isnot correlated across thedi�erenceof maps.

The role of 4S(�) in the covariance model is clear as a
reweighting, but the 4S(�) term in the data matrix also plays
an important role in the likelihood. In the Newton-Raphson
approach to maximum likelihood, each iteration is based on
the di�erence between the data matrix (outer product of the
data) and thecovariancemodel,

� = D �C(�) (21)

= [xdxT
d + 4S(�)] �[2S(�b) + 2N + 4S(�)] (22)

= xdxT
d �2S(�b) �2N: (23)

The maximum likelihood therefore fits the residual variance
in the di�erence map to the signal bias model, accounting
for thermal noise. Recall that each Newton-Raphson step in
Eq. (3) is weighted by a C�1, which also contains 4S(�) and
weights�consistently with the sum map.

The reweighted likelihood of the di�erence map should be
interpreted as Pd(�bj�), the distribution of bias parameters
evaluated in a map where signal variance is fixed at �. It
should not be interpreted as the joint likelihood Pd(�b;�).

The sum and di�erence likelihoods can be sampled and
combined through the following process:

1. Use the map sum xA + xB to constrain 2rtrue + rbias,
marginalized over all other parameters. Thisgivesadi-
agonal band of degeneracy in the rtrue-rbias plane.

2. Usethedi�erencemap xA�xB in there-weighted likeli-
hood Eq. (20) (rtrue fixed) to estimate thedistribution of
rbias, marginalized over all other parameters. Thisgives
asliceof theprobability of rbias for agiven true level of
signal rtrue, P(rbiasjrtrue).

3. Repeat the di�erence analysis for any other null test
combinations, giving contours in the rtrue-rbias plane.

FIG. 6. Same layout as Fig. 5, except that instead of adding vari-
ance in the form of B-modes (which are in the likelihood covariance
model), this simulation has detector noise 30% higher than mod-
eled and is not explained by any free term of the covariance. Mis-
specification produces a parameter-dependent bias. Here we force
the likelihood of the di�erence map to weight consistently with the
covariance in thesum map likelihood. Without reweighting, thelike-
lihood of the di�erence map gives rbias < 0:004 at 95% confidence.

Figure6 applies this process to maps with rtrue = 0:05
and detector noise that is 30% higher than is modeled in the
likelihood. Without reweighting, the likelihood of the di�er-
ence map reports rbias < 0:004 at 95%, independently of rtrue.
Reweighting thelikelihood results in P(rbiasjrtrue) that depends
on rtrue, analogously to Fig.3.

WMAP [22] and Planck [38] find the posterior distribution
of �from di�erence maps, but do not describe added signal
covariance in the model. This covariance is required to con-
sistently weight contamination in thenull analysis.

To constitute a useful null test, the likelihood of the di�er-
ence map must also give an informative confidence interval.
Appendix C describes the curvature of the posterior parame-
ter distribution. When there is no excess variance, the curva-
ture is the usual Fisher matrix Tr [C�1C;�i C

�1C;�j ]. The width
coincideswith the distribution of the cosmological signal and
noiseat fixed contamination. Thewidth isanalogousto astan-
dard null test, where the errors in the di�erence map power
spectrum do not account for any contamination.
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The width of the likelihood is erroneous when the di�er-
ence map has an excess variance that is not described by free
parameters in the likelihood model. Contamination must be
treated either in a reprocessing of thedataor bemodeled self-
consistently in the likelihood. Examples here could include a
fit for noise amplitude in the map or deprojection [3], where
instrumental systematics of known structure produce correla-
tions between temperature and polarization maps. Extensions
to the likelihood must balance adequacy (of describing non-
cosmological variance) and simplicity. The likelihood ratio
and related tests can be used to assess the candidate exten-
sions.

V. SUMMARY

Instrumental systematics, residual foregrounds, and other
excessvarianceproducebias in cosmological parameters. Ex-
periments to detect inflationary gravitational waves must use
a battery of tests to rule out biases that could lead to a false
detection. Determination of cosmological parametersdirectly
from pixel-space likelihood has shown promise as a method
to self-consistently handle foregroundsand survey depth vari-
ations or masks, especially on the largest scales in the survey.
Thisapproach bypassescalculation of theband powers, which
have had a vigorous history of tests for systematics. We have
developed some pixel-space likelihood analogies to the cross
power, noisemodeling, and thedi�erencemap null test.

If excess variance modulates with time or instrumental
setup, a di�erence map can be interpreted using a likelihood
for aparticular sourceof parameter bias. Thetwo dimensional
posterior distribution of a parameter and its bias is a conve-
nient diagnostic. We show examples of this parameter bias
plane for the tensor to scalar ratio r when the excess variance
is parameterized in the likelihood, and where it is not (mis-
specification).

The parametric nature of the likelihood requires additional
care. Bias in the pixel-space likelihood is signal-dependent
because the map weights contain signal covariance. Signal
dependence of the weight produces parameter distributions

that are not consistent between the sum and di�erence maps.
We propose a procedure for consistently weighting contami-
nation. Themethod accomplishestheroleof anull test: under
the same assumptions as the sum map analysis, is there evi-
dence for parameter bias caused by modulated contamination
in the di�erence?

We recommend an iterative approach. In a first pass, the
likelihood models all cosmological parameters and imper-
fectly known instrumental terms (e.g. detector noise). If a
weighted di�erence null test fails, that information should be
used either to construct a model of excess variance or to re-
process thedata in away that eliminates thesystematic e�ect.
If a left-right scan di�erence fails, compensation of timecon-
stantsshouldbereassesseduntil that test passes. Temperature-
to-polarization leakageresults in acovariancematrix between
the temperature and the polarization. In parallel with cosmo-
logical parameters, the pixel-space likelihood should include
any contamination which hasawell-defined model.

The likelihood of the di�erence map provides a parametric
test for mis-specification of the covariance model by isolat-
ing components that vary across data subsets. A more gen-
eral problem isassessing whether there isvariancein thedata,
time-varying or not, that is not explained well by the model
and could produce spurious B-modes. A parametric model
can be tested against lessparametric models that are sensitive
to a wider range of variance structure. In the case of CMB
polarization, the power spectrum is already an excellent ex-
ampleof thisapproach and hasbeen used by WMAP[22] and
Planck [38] to corroborate likelihood results on large scales.
The power spectrum exposes statistically isotropic variance
with `-dependencedi�erent from thesignal. At thenext level,
tests for isotropy [27, 37] are sensitive to residual galactic
foregrounds.
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Appendix A: Relation of the joint likelihood and crosspower approaches

For amodel with only B-modes, � = fr; rbg, the joint covarianceacrosssubseason maps A and B is

C =

 
(r + rb)ST + NA rST

rST (r + rb)ST + NB

!

(A1)

Asafirst iteration of theNewton-Raphson (NR) approach in Eq. (3), take the casewhere r = rb = 0. In this case,

F =

 
� �
� �

!

�=
1
2

Tr [(N�1
A + N�1

B )ST(N�1
A + N�1

B )ST] �=
1
2

Tr [N�1
A STN�1

A ST + N�1
B STN�1

B ST] (A2)

and the initial iteration for r is

�r =
Tr

h
(xxT �C)Q

i

2Tr (N�1
A STN�1

B ST)
Q � C�1

 
0 ST

ST 0

!

C�1 (A3)

wherewehave identified the form of an optimal quadratic estimator Q.
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Thenoisebias term

Tr [CQ] = Tr

" 
0 ST

ST 0

!  
N�1

A 0
0 N�1

B

!#

= 0: (A4)

The signal estimator term

Tr [xxTQ] = 2xT
AN�1

A STN�1
B xB: (A5)

If we take theestimator r̂ to be thisfirst NR iteration, it has the form of across power

r̂ =
xT

AN�1
A STN�1

B xB

Tr (N�1
A STN�1

B ST)
: (A6)

Appendix B: Parameter dependenceof the bias

Section III A argues that the bias in r from contamination covariance � is hrbiasi = Tr (C�1STC�1�)=Tr (C�1STC�1ST). As
a toy model to understand the behavior analytically, take the contaminant � = �2

b1 and noise N = �2
n1. This is equivalent to

having uniform detector noise in excessof what is predicted. Expand the B-mode signal covariance rST = rU�UT. The inverse
covarianceaccording to theWoodbury inverse is

C�1 = (rST + N)�1 = N�1 � N�1U(r�1��1 + UT N�1U)�1UT N�1 (B1)

= ��2
N U[1 ���2

N (r�1��1 + ��2
N 1)�1]UT: (B2)

Taking r ! 0, C�1 = ��2
N 1. This is just theuniform detector noiseweight. Thequadratic estimator part of thebias trace is

C�1STC�1 = ��4
N U[1 ���2

N (r�1��1 + ��2
N 1)�1]�[1 ���2

N (r�1��1 + ��2
N 1)�1]UT = ��4

N UWUT; (B3)

where we have identified the weighting term W as the combination of factors between U and UT. The weight is implemented
as a vector multiplication as long as the contaminant is diagonalized by the same vectors U as the signal, which in this case is
possiblebecausewechose contaminant � = �2

b1. Here,

ĥrbiasi =
Tr (UWUT�2

b1)

Tr (UWUTU�UT)
= �2

b
w(r)T1
w(r)T�

; (B4)

wherewehaveused thecyclic property of thetrace, used theorthonormality of theeigenvectors, and let �and w bethediagonals
of the signal eigenvalues � and weight W. In contrast, if the contaminant has the same covariance structure as the signal,
r̂bias = �2

bw(r)T�=w(r)T�= �2
b with no dependenceon r. Each term of theproduct w(r)T�is the� S=(S + N) of thesignal mode.

Modes in the map that contribute less signal to noise are downweighted. The denominator Tr (C�1STC�1ST) / w(r)T�is the
e�ective number of independent modes of information about r in themap, and it isalso equal to theFisher matrix.

Appendix C: Curvature of the likelihood under mis-specification

Thegeneral curvatureof the log-likelihood is [50]

2L ;i j = Tr [ �C�1C;iC
�1C; j + C�1C;i j + C�1(C;iC

�1C; j + C; jC
�1C;i)C

�1D (C1)

�C�1(C;iC
�1D; j + C; jC

�1D;i ) �C�1(C;i jC
�1D � D;i j )]: (C2)

where D = (x ��)(x ��)T. In thecase that thecovariancemodel C is thesameas thecovarianceof thedatahDi = C, and there
isno parameter dependence in the mean, one recovers theusual Fisher matrix (expectation of the log-curvature)

Fi j =
1
2

Tr (C�1C;iC
�1C; j): (C3)

With some unknown contamination xc, the expectation value of D is C + xcxT
c . Generally the maximum-likelihood estimate

of thecovariance isbiased by thepresenceof thiscontamination, or Cbiased. Neglecting parameter dependenceof themean (D;i )
and second derivativesof thecovariance (applicable for themodelshere with rST) gives

2hL ;i j i = Tr [ �C�1C;iC
�1C; j + C�1(C;iC

�1C; j + C; jC
�1C;i )C

�1hDi ]: (C4)
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Thefirst term is theordinary Fisher matrix, but wemust replaceC�1 ! C�1
biased. Thesecond term containsC�1hDi ! C�1

biased(C+
xcxT

c ). The width of the likelihood (as explored in MCMC) no longer has a clear interpretation because the model in the
likelihood Cbiased doesnot coincidewith (Ctrue + xcxT

c ).
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